pool_cindex Calculates the pooled C-index and Confidence intervals.

pool_cindex(data, conf.level = 0.95, dfcom = NULL)

Arguments

data

An object of class 'mistats' ('Multiply Imputed Statistical Analysis'.) or a m x 2 matrix with correlation coefficients and standard errors in the first and second column. For the latter option dfcom has to be provided.

conf.level

conf.level Confidence level of the confidence intervals.

dfcom

Number of completed-data analysis degrees of freedom. Default number is taken from function cindex

Value

The pooled c-index value and the confidence intervals.

Details

Rubin's Rules are used for pooling. The C-index values are log transformed before pooling and finally back transformed.

Vignettes

https://mwheymans.github.io/miceafter/articles/pooling_cindex.html

See also

Author

Martijn Heymans, 2021

Examples


 # Logistic Regression
 imp_dat <- df2milist(lbpmilr, impvar="Impnr")
 res_stats <- with(data=imp_dat,
  expr = cindex(glm(Chronic ~ Gender + Radiation,
  family=binomial)))
 res <- pool_cindex(res_stats)
 res
#>        C-index Critical value 95 CI low 95 CI high
#> [1,] 0.6638267       1.976656 0.5764274  0.7412861
#> attr(,"class")
#> [1] "mipool"

 # Cox regression
 library(survival)
 imp_dat <- df2milist(lbpmicox, impvar="Impnr")
 res_stats <- with(data=imp_dat,
   expr = cindex(coxph(Surv(Time, Status) ~ Pain + Radiation)))
 res <- pool_cindex(res_stats)
 res
#>        C-index Critical value 95 CI low 95 CI high
#> [1,] 0.5820398       1.976697 0.5330546  0.6294584
#> attr(,"class")
#> [1] "mipool"